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Fluctuation-dissipation theorem and the polarizability of rodlike polyelectrolytes:
An electric circuit view

JoséA. Fornés
Instituto de Fı´sica, Universidade Federal de Goia´s, Caixa Postal 131, 74001-970 Goiaˆnia, GO, Brazil

~Received 30 May 1997; revised manuscript received 31 July 1997!

We use the fluctuation-dissipation theorem to estimate the polarizability or dielectric constant as a function
of the frequency for low electric field, of a polyelectrolyte immersed in an ionic solution; the idea is to consider
each charged group within the polyelectrolyte framework and its neighborhood as a resistor and a capacitor in
series. We obtained for the longitudinal polarizabilitya i(0)5Cd2, whereC is the total polyelectrolyte-ionic
capacitance andd the average displacement of the ‘‘bound’’ ions under the influence of the thermal fluctuating
field. Any of the theories that predicta i(0), d, and the relaxation timet, can be used to estimateR andC, on
the other hand,R, C, andd can be obtained independently by modeling the system. Using Mandel’s results we
obtain for the total polyelectrolyte-ionic longitudinal capacitanceC5n2C0, wheren is the number of con-
densed but mobile counterions of valencez, andC0 is the elementary capacitance,C05(ze0)2/kT. We obtain
results that are consistent with the experimental data of Takashima for the dielectric dispersion of DNA
solutions.@S1063-651X~98!01702-4#

PACS number~s!: 87.15.Da
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I. INTRODUCTION

Since the pioneering works of Schwarz@1,2#, and Mandel
@3# on the polarization of rodlike polyelectrolytes, a lot
work has been performed on this subject, basically beca
most of the biological macromolecules under physiologi
conditions are polyelectrolytes in solution and their biolo
cal activity depends on their physicochemical properti
Manning @4# used his counterion condensation formalism
generalize Mandel’s model for polarization. In a recent pa
Mohanty and Zhao@5# generalized the Mandel-Mannin
theories even further to include low and high electric fie
This paper also contains an excellent biography on this s
ject.

With respect to the dielectric dispersion of polyelectroly
solutions a lot of work has also been performed since
pioneering works of Oncley and O’Konski on the dielect
behavior of protein solutions: Oncley@6# has attributed the
dielectric properties to orientational relaxation of perman
dipoles, and O’Konski@7# to phenomena due to surface co
ductivity. The dielectric dispersion of DNA solutions wa
first measured by Allgen@8# and Jungneret al. @9# followed
by Jerrard and Simmons@10# and Takashima@11–13#.
Oosawa@14,15# using the method of the mode expansio
explained the experimental results of Takashima. Man
and Jenard@16,17# studied the dielectric behavior of aqueo
polyelectrolyte solutions and proposed a model that is ba
upon the assumption that the polyelectrolyte solution
haves as a suspension of spheroids exhibiting longitud
polarization, which is due to ‘‘bound’’ ions. This model wa
improved by Takashima@13# explaining the decrease of th
relaxation time with increasing salt concentration.

The main objective of the present work is to show t
potential of the fluctuation-dissipation theorem~FDT! in de-
riving physical properties as well as to give another view
the polarizability of a polyelectrolyte immersed in an ion
solution.
571063-651X/98/57~2!/2110~5!/$15.00
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II. THE FLUCTUATION-DISSIPATION THEOREM

One way of formulating the FDT is by formally regardin
the spontaneous fluctuations of a quantityx as due to the
action of some random forcef , meaning that the environ
ment senses the system through thegeneralized susceptibil
ity, a(v), and respond with a fluctuating force. The Four
componentsxv and f v are related by

xv5a~v! f v . ~1!

The relation between thegeneralized impedance Z(v) and
a(v) is

Z~v!52
1

iva~v!
~2!

with i being the imaginary unit. Asxv5x0ve2 ivt we can
write

f v5Z~v!
dxv

dt
. ~3!

The spectral densities of the fluctuation are given by

~x2!v5ua~v!u2~ f 2!v . ~4!

The results of the FDT are

~x2!v5\a9~v!coth
\v

2kT
. ~5!

Correspondingly,

~ f 2!v5
\a9~v!

ua~v!u2
coth

\v

2kT
. ~6!

The mean square of the fluctuating quantity is
2110 © 1998 The American Physical Society
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^x2&5
1

pE0

`

~x2!vdv5
\

pE0

`

a9~v!coth
\v

2kT
dv. ~7!

These formulas constitute the FDT, established by Ca
and Welton @18#. They relate the fluctuations of physic
quantities to the dissipative properties of the system.
energies kT@\v ~classical limit! we have
coth(\v/2kT)'2kT/\v, andua(v)u2'ua8(0)u2. Then Eq.
~7! becomes

^x2&5
2kT

p E
0

`a9~v!

v
dv. ~8!

Using the Kramers and Kronig’s relations this integral can
written as@19#

^x2&5kTua8~0!u. ~9!

Averaging Eq.~4! in frequency in the classic region, we hav

^x2&5^~x2!v&5^ua~v!u2~ f 2!v& ~10!

and in order for Eqs.~9! and ~10! to be compatible, we ob
tain

^ f 2&5
kT

ua8~0!u
. ~11!

From Eqs.~9! and ~11! we obtain

^x2&^ f 2&5~kT!2. ~12!

This is the classical analogy of the Heisenberg uncerta
principle.

In an electric circuit the relation between the Fourier co
ponents of the spontaneous fluctuational currentI v and volt-
age,Vv is given by

Vv5Z~v!I v , ~13!

Eq. ~13! can be written as

qv5a~v!Vv , ~14!

where qv is the Fourier component of the fluctuation
charge.

In case of aRC circuit in series, we have

Z~v!5R1
1

ivC
. ~15!

Correspondingly from Eq.~2!, a(v) is given by

a~v!5
2C

11~tv!2
1 i

tvC

11~tv!2
. ~16!

Then

a8~v!5
2C

11~tv!2
, a9~v!5

tvC

11~tv!2
. ~17!
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From Eqs.~5! and ~17! and considering the classical limi
we obtain~in this limit, whether the circuit is in series o
parallel is irrelevant concerning fluctuating magnitud
@20#!:

~q2!v5
2kTtC

11~tv!2
~18!

and

~V2!v5
2kTt

C@11~tv!2#
. ~19!

Then from Eq.~9!

^q2&5
1

pE0

`

~q2!vdv5kTC. ~20!

Correspondingly the mean quadratic fluctuation of the vo
age,^V2&5^q2&C22, will be

^V2&5
kT

C
. ~21!

III. THE LONGITUDINAL POLARIZABILITY

The fluctuations we are considering are produced by
ions that according to a Boltzmann distribution are more
less trapped on the surface of the polyelectrolyte and fo
the fraction of the ‘‘bound’’ ions. Although they are radiall
fixed, they still have a certain freedom to move in the lon
tudinal direction of the molecule. As a consequence of t
mobility Schwarz @1,2#, Mandel @3#, and Oosawa@14,15#
have predicted a large polarizabilitya(v) for this kind of
molecules. In order to determine this polarizability we co
sider any fixed charge and the ‘‘bound’’ ions in its neighbo
hood as a capacitor and a resistor in series. In accordanc
total molecular complex generalized impedanceZ(v) as a
function of the radial frequencyv will be

Z~v!5(
i

niZi~v!, ~22!

whereZi is the impedance associated to each chemical gr
of classi ~a class is defined as a set of chemical groups w
the same charge! andni is the number of ‘‘bound’’ ions. For
the case of only one class of groups Eq.~22! transforms to

Z~v!5nZ~v!5R1
1

ivC
, ~23!

whereR5nR and C5C/n are the total resistance and c
pacitance associated with the group-bound ion system,R and
C are the individual resistance and capacitance of e
group-bound ions system. The relation between the Fou
components of the spontaneous fluctuational currentI v and
voltage,Vv is given by

Vv5Z~v!I v . ~24!

The complex generalized susceptibility is given by
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a~v!52
1

@ ivZ~v!#
. ~25!

Equation~14! can also be written as

pv5@2a~v!d2#Ev , ~26!

whered is the average displacement of the ‘‘bound’’ ion
under the influence of the thermal fluctuating fieldEv and
pv the corresponding Fourier component of the fluctuat
dipole moment.

Then the corresponding polarizability parallel to the m
lecular axis will be

a i~v!52a~v!d2. ~27!

From Eqs.~16! with C[C, Eqs.~23!, and~27! we obtain for
the complex polarizabilitya i(v):

a i~v!5
Cd2

11~tv!2
1 i

2tvCd2

11~tv!2
, ~28!

t being the relaxation time of the fluctuation given by

t5RC ~29!

and

a i~0!5Cd2. ~30!

Correspondingly the real and imaginary components of
polarizability are

a i8~v!5
a i~0!

11~tv!2
, a i9~v!5

2tva i~0!

11~tv!2
. ~31!

Mandel@3#, among others, has estimateda i(0), d, andt for
rodlike, charged macromolecules, we will use his results
order to estimate our electrical molecular parameters. M
del derived the following three formulas:

~ i! a i~0!5n
~ze0!2

kT

L2

12
5

gze0
2L3

12kTb
, ~32!

whereg5zn/N is the degree of association of the counte
ons,z the valence of the ‘‘bound’’ ions,b5L/N is the linear
charge spacing,N is the total number of charged polyme
sites, andL is the length of the rodlike molecule.

~ ii ! d25
~ze0!2L4

~12kT!2
E2, ~33!

whereE is the applied electric field.

~ iii ! t5
ze0L2

12mkT
, ~34!

with m being the mean mobility of the ions along the pol
mer framework.

From Eqs.~26! and ~27! we obtain

pv5a i~v!Ev . ~35!
g
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-

Applying to Eq.~35! the results of the fluctuation-dissipatio
theorem, Eq.~9!, in the region of classical fluctuationskT
@\v or v!kT\215431013 s21 at room temperature@Eq.
~36! was already derived by Oosawa@15# following an aver-
aging procedure#:

^p2&5a i~0!kT, ~36!

with

^E2&5
kT

a i~0!
5

kT

Cd2
, ~37!

where we have used, in accordance with Eq.~12!, the rela-
tion

^p2&^E2&5~kT!2. ~38!

As in our definitiond is produced by the electric therma
fluctuating field, we can consider the applied field in Eq.~33!
E25^E2&. Then from Eqs.~32!, ~33!, and~37!, we obtain

d25
L2

12n
5

zLb

12g
. ~39!

The corresponding molecular capacitanceC5a i(0)/d2, will
be

C5n2
~ze0!2

kT
5S gL

b D 2 e0
2

kT
. ~40!

From Eqs.~29! and ~34! we can estimate the resistanceR,
namely,

R5
b2z

12me0g2
. ~41!

In order to link microscopic parameters asa i(v) with mac-
roscopic measurable ones we make use of the results o
theory of electric polarization; see, for instance,@14,21#:

e0e~v!E~v!5e0es1P~v!, ~42!

whereE(v) is the applied macroscopic field, andP(v) is
the polarization, which is given by

P~v!5S NA

V Da i~v!F~v!, ~43!

whereF(v) is the ‘‘inner field,’’ which is the actual field
experienced by the molecule andV is the molar volume.

From Eqs.~42! and~43! we obtain the relative incremen
of the dielectric constant:

e~v!2es

es
5BS NA

V D 1

e0es
a i~v!, ~44!

with B given by

B~v!5
F~v!

E~v!
. ~45!

B is usually a little larger than unity for a polar solvent@14#.
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Using the relations

e~v!5e8~v!2 i e9~v!,

a i~v!5a i8~v!1 ia i9~v!, ~46!

then for the real and imaginary parts of the dielectric co
stant we have

e8~v!2es

es
5BS NA

V D 1

e0es

a i~0!

@11~tv!2#
, ~47!

e9~v!

es
5BS NA

V D 1

e0es

vtva i~0!

@11~tv!2#
, ~48!

a i(0), andt, are given by Eqs.~32! and ~34!, respectively.
Polyelectrolytes such as linear polyacids or DNA sh

broad dispersion curves of the dielectric constant at low
quencies, which cannot be explained by a single relaxa
time @14,15# in order to get a good fit with the experiment
curve we have to generalize Eqs.~47! and ~48!, namely,

e8~v!2es

es
5BS NA

V D 1

e0es
(

k

a ik~0!

@11~tkv!2#
, ~49!

e9~v!

es
5BS NA

V D 1

e0es
(

k

vtka ik~0!

@11~tkv!2#
. ~50!

IV. RESULTS AND CONCLUSION

The objectives raised in the Introduction have be
achieved. We derived an expression for the longitudinal
larizability and dielectric constant,a i(v) and e(v), which
as derived from the FDT, have the real and imaginary p
satisfying the Kramers and Kronig’s dispersion relations.

In this method is defined a local capacitance and re
tance surrounding each group in a polyelectrolyte ionic
lution. This can be useful in modeling complex systems
obtaining more realistic approximations, indeed the aut
envisions science as an evolution of ideas and approxi
tions.

We have used the simple expression fora i(0) of Man-
del’s model@3#, which does not consider interionic intera
tion and only one relaxation time. We can see from Fig
that the profiles fore8(v) and e9(v) are in quite good
agreement with the experimental data of Takashima@11#, in
spite of the uncertainty in the factorB @22#, in the degree of
counterions’ associationg and also in the molecular weigh
of the DNA sample, not reported in the cited paper
Takashima but inferred by us through the reported DN
length of 7800 Å to be approximately 73106. The DNA
molecule has two phosphate charges per unit, each wi
helical spacing of 3.37 Å, thenb53.37 Å/251.68 Å, conse-
quentlyN5L/b54627, we consideredg51.

From Eq. ~34! and from the experimental value fort
51023 s we estimate the mobilitym of the ‘‘bound’’ ions as
m51.9631029 m2 s21 V21, which is 26 times smaller than
the mobility of Na ions in water,mNa155.1931028

m2 s21 V21, showing that these ions are more or le
trapped.
-

-
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From Eq.~40! we estimate the total polyelectrolyte-ion
capacitanceC5133 pF and, consequently, the local capa
tance will beC5nC50.61 mF. These values are substa
tially greater than the double layer capacitance surroundin
spherical and rodlike particle in solution@23–24#, which is
of the order of fF. From the already known values ofC andt
and from Eq.~29! we estimate the total ‘‘bound’’ ions resis
tance asR57.5 MV, meaning that the resistance per gro
is R51621 V. From Eq. ~39! we obtain the value of the
average displacement of the ‘‘bound’’ ions under the infl
ence of the thermal fluctuating field, giving for our DN
sampled533 Å.

Equation~32! gives the value for the static polarizabilit
a i(0)51.459310227 F m2, which is 9.0931012 greater than

FIG. 1. ~a! Representation of Eqs.~47! and ~48! for a DNA
solution at room temperature in water:L57400 Å, molecular
weight Mv573106, DNA concentration by weight 0.01%,t51
ms,g51, b51.68 Å, B51. ~b! Same as~a!, Cole-Cole plot.
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the mean polarizability of water moleculeāH2O51.6310240

F m2 @21#.
Finally, from the knowledge ofa i(0) and with the help of
Eq. ~36! we estimate the mean thermal fluctuating dipo
moment at room temperature, p̄5^p2&1/252.454
310224 C m57.373105 D, which is 43105 greater than
the permanent dipole moment of a water molecule~1.84 D!.
This dipole moment was produced by the thermal fluctuat
field given by Eq.~37!, which, in this case, isĒ5^E2&1/2

51687 V m21.
g

We suggest the application of the present formalism to
determination of the perpendicular polarizability and fluc
ating dipole moment,a'(v) and ^p'

2 &1/2, respectively, pro-
duced by fluctuations of the ionic atmosphere surround
the polyelectrolyte.
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