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Fluctuation-dissipation theorem and the polarizability of rodlike polyelectrolytes:
An electric circuit view
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We use the fluctuation-dissipation theorem to estimate the polarizability or dielectric constant as a function
of the frequency for low electric field, of a polyelectrolyte immersed in an ionic solution; the idea is to consider
each charged group within the polyelectrolyte framework and its neighborhood as a resistor and a capacitor in
series. We obtained for the longitudinal polarizabileii}(O)=nC§2, whereC is the total polyelectrolyte-ionic
capacitance and the average displacement of the “bound” ions under the influence of the thermal fluctuating
field. Any of the theories that prediet;(0), 6, and the relaxation time, can be used to estimaandC, on
the other handR, C, andé can be obtained independently by modeling the system. Using Mandel’s results we
obtain for the total polyelectrolyte-ionic longitudinal capacitarfiten?C,, wheren is the number of con-
densed but mobile counterions of valer@ndCy is the elementary capacitand®,= (ze,)%/kT. We obtain
results that are consistent with the experimental data of Takashima for the dielectric dispersion of DNA
solutions.[S1063-651X98)01702-4

PACS numbds): 87.15.Da

I. INTRODUCTION Il. THE FLUCTUATION-DISSIPATION THEOREM

One way of formulating the FDT is by formally regarding

3 th larizati f rodlik Ivelectrolvt ot of the spontaneous fluctuations of a quantityas due to the
3] on the polarization of rodiike polyelectrolytes, a lot o action of some random forck meaning that the environ-

work has bee_n performed on this subject, basically_ bec_ausr’ﬁent senses the system through ¢femeralized susceptibil-
most of the biological macromolecules under phyS|oIog|caIity’ a(w), and respond with a fluctuating force. The Fourier
conditions are polyelectrolytes in solution and their bi°|°9i'components< andf,, are related by

w w

cal activity depends on their physicochemical properties.
Manning[4] used his counterion condensation formalism to X,=a(w)f,. (1)
generalize Mandel’'s model for polarization. In a recent paper
Mohanty and Zhao[5] generalized the Mandel-Manning The relation between thgeneralized impedance(4) and
theories even further to include low and high electric field.a(w) is
This paper also contains an excellent biography on this sub-
ject. Z(w)=—

With respect to the dielectric dispersion of polyelectrolyte
solutions a lot of work has also been performed since the _
pioneering works of Oncley and O’Konski on the dielectric With i being the imaginary unit. As,,=xo,e "' we can
behavior of protein solutions: Oncld¥] has attributed the Write
dielectric properties to orientational relaxation of permanent q
dipoles, and O’Konskj7] to phenomena due to surface con- f,=Z(w) ﬁ_ 3
ductivity. The dielectric dispersion of DNA solutions was dt
ErySt Jrgrerﬁgr?ngyspi\lri?rigﬁgig]d ‘;l;ggr.]gitazlhi[ri]aﬁlio_vgé The spectral densities of the fluctuation are given by
Oosawa[14,15 using the method of the mode expansion, (x2) = |a(w)|4(f2) (4
explained the experimental results of Takashima. Mandel @ @’
and Jenardl16,17] stgdied the dielectric behavior of aqueous The results of the FDT are
polyelectrolyte solutions and proposed a model that is based
upon the assumption that the polyelectrolyte solution be- ho
haves as a suspension of spheroids exhibiting longitudinal (X2)w=ﬁa"(w)cot%. (5)
polarization, which is due to “bound” ions. This model was
improved by Takashimfl3] explaining the decrease of the
relaxation time with increasing salt concentration.

The main objective of the present work is to show the ha (o) 5
potential of the fluctuation-dissipation theor¢RDT) in de- (2) _telw hz—w (6)
riving physical properties as well as to give another view of ¢ la(w)|? kT
the polarizability of a polyelectrolyte immersed in an ionic
solution. The mean square of the fluctuating quantity is

Since the pioneering works of Schwdfz 2], and Mandel

@

iwa(w)

Correspondingly,
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s 1= b (o b From Egs.(5) and (17) and considering the classical limit,
(x5 = ;j (x )wdw=;J a"(w)COthzTrdw- (7)  we obtain(in this limit, whether the circuit is in series or
0 0 parallel is irrelevant concerning fluctuating magnitudes

These formulas constitute the FDT, established by CaIIeII;ZO]):
and Welton[18]. They relate the fluctuations of physical

guantities to the dissipative properties of the system. At (g2 :ﬁ (18)
energies kT>hw (classical limijp  we have ¢ 1+ (rw)?
coth(h w/2kT)~2kT/h o, and|a(w)|?~|a’(0)|2. Then Eq.
(7) becomes and
2kT [»a"(w) 2kTr
2 = —— d . 8 V2 U):—' 19
()= ——| —,—do ®) Vo= s rar?] (19
Using the Kramers and Kronig'’s relations this integral can belhen from Eq.(9)
written as[19] 1
2 _ = 2 _
<X2>:k-|-|a/(o)| (9) <q >_ Wfo (q )wdw kTC (20)

Averaging Eq(4) in frequency in the classic region, we have Correspondingly the mean quadratic fluctuation of the volt-
age,(V2)=(q?)C~2, will be

(x2)=(®) o) =(la(@)[*(f?),) (10)
kT
and in order for Egs(9) and(10) to be compatible, we ob- <V2>: T (21
tain
KT ll. THE LONGITUDINAL POLARIZABILITY
2 =
() |’ (0)] ' (19 The fluctuations we are considering are produced by the
ions that according to a Boltzmann distribution are more or
From Egs.(9) and(11) we obtain less trapped on the surface of the polyelectrolyte and form
the fraction of the “bound” ions. Although they are radially
(x2)(f2)=(kT)2. (12)  fixed, they still have a certain freedom to move in the longi-

tudinal direction of the molecule. As a consequence of this
This is the classical analogy of the Heisenberg uncertaintynobility Schwarz[1,2], Mandel [3], and Oosawd14,15
principle. have predicted a large polarizability(w) for this kind of
In an electric circuit the relation between the Fourier com-molecules. In order to determine this polarizability we con-
ponents of the spontaneous fluctuational curtgrand volt-  sider any fixed charge and the “bound” ions in its neighbor-
age,V,, is given by hood as a capacitor and a resistor in series. In accordance the
total molecular complex generalized impedari{@) as a
V,=Z(w)l,, (13)  function of the radial frequency will be

Eqg. (13 b itt
g. (13) can be written as Z(w)=2 0.Z,(0). 22
do=a(w)V,, (14 '

whereZ; is the impedance associated to each chemical group
of classi (a class is defined as a set of chemical groups with
the same chargeandn; is the number of “bound” ions. For
the case of only one class of groups E2R) transforms to

where q,, is the Fourier component of the fluctuational
charge.
In case of aRC circuit in series, we have

1
Z(0)=R+—=. (15 L w)=nZ(w)=R+ (23)

Correspondingly from Eq2), a(w) is given by where R=nR and C=C/n are the total resistance and ca-
pacitance associated with the group-bound ion syskeand
-C TwC C are the individual resistance and capacitance of each

(@)= 1+ (7w)? i 1+(70)? (16) group-bound ions system. The relation between the Fourier
components of the spontaneous fluctuational currgrand
Then voltage,V,, is given by
_c r0C V,=Zw)l,. (29
o' (w)= S, d(0)=———.  (17) . o
1+ (7w) 1+ (7w) The complex generalized susceptibility is given by
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1 Applying to Eq.(35) the results of the fluctuation-dissipation
a(w)=— lToZ(@)] (25  theorem, Eq(9), in the region of classical fluctuationsT
>ho or o<kTh 1=4x10"s"! at room temperaturgEq.
Equation(14) can also be written as (36) was already derived by Oosab] following an aver-
, aging procedurg
=[—a(w)dé]E 2
po=[- () FIE,, (26 (PP =an (OKT a9
where § is the average displacement of the “bound” ions
under the influence of the thermal fluctuating fi€g and ~ With
p, the corresponding Fourier component of the fluctuating KT KT

dipole moment. (E?)= _ (37)
Then the corresponding polarizability parallel to the mo- a)(0) (&%
lecular axis will be
where we have used, in accordance with E@®), the rela-
a(w)=— a(w) 8. (27)  tion

From Eqgs.(16) with C=C, Egs.(23), and(27) we obtain for (p?){E?)=(kT)2. (39
the complex polarizabilityy(w): ) o ) ]
As in our definition § is produced by the electric thermal

62 — rw(8? fluctuating field, we can consider the applied field in BBf)

aj(w)= +i , 28)  E2?=(E?). Then from Eqs(32), (33), and(37), we obtain
H( ) 1+(T(1))2 1+(7'w)2 ( ) < > q ( ) ( ) ( 7)
being the rel ion ti f the fl i i b Z—LZ—ZLb 39
7 being the relaxation time of the fluctuation given by “im 12y (39
T=RC (29 The corresponding molecular capacitambeaH(O)/(Sz, will
and be
. 2 L\2e.2
)(0)=C&2. (30) Y G N e
I L b kT (40
Correspondingly the real and imaginary components of the
polarizability are From Eqgs.(29) and (34) we can estimate the resistanBe
namely,
, )(0) " —70a)(0)
w)= : (w)=——— . (3D b?
e e 1+ (10)? R=——. (4D)
12ue07?

Mandel[3], among others, has estimateg(0), &, and 7 for _ _ _ _
rodlike, charged macromolecules, we will use his results iffn order to link microscopic parameters ag ») with mac-
order to estimate our electrical molecular parameters. Man0scopic measurable ones we make use of the results of the

del derived the following three formulas: theory of electric polarization; see, for instanf®4,21:
_ (z)2 L2 yzeélL® e0e(w)E(w) = gpest+ P(w), (42)
(0 (=N 5= 17D 32 i i ic fi i
where E(w) is the applied macroscopic field, af{ @) is

. i . the polarization, which is given b
wherey=zn/N is the degree of association of the counteri- pofarization, which is giv y

ons,z the valence of the “bound” iondy=L/N is the linear N,
charge spacingN is the total number of charged polymer P(w)=(v)a|(w)|:(w), (43
sites, and. is the length of the rodlike molecule.

o 2 where F(w) is the “inner field,” which is the actual field
52:(290) L E2 (33) experienced by the molecule akdis the molar volume.
(12KT)? ' From Egs.(42) and(43) we obtain the relative increment
of the dielectric constant:

e oML
(34) s

Y,
with B given by
with w being the mean mobility of the ions along the poly-
mer framework. F(w)

From Eqgs.(26) and (27) we obtain Blw)= E(w) 49

(i)
whereE is the applied electric field.

zel?

- €p€s
12ukT’

(i) 7

Po=a)(®)E,. (35 B is usually a little larger than unity for a polar solvdi#].
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Using the relations 0 500 1000 1500 2000
T T T T T T T
DNA (a) |

e(w)=€'(w)—i€(w),
700
a)(w)=ea|(0)+iaf(w), (46)
600
then for the real and imaginary parts of the dielectric con--,
stant we have

1000 +

6'“*’_)—%:8(%) 1 0 w0

€ V| €o€s [1+ (10)2]" “7

300

Dielectric constant
.2 $S0| 91198|81q

eu(w):B(M>i oTwa)(0) 48) oo

V) e€o€s[1+(rw)?]’

€g 200
«|(0), and, are given by Eqs(32) and(34), respectively.
Polyelectrolytes such as linear polyacids or DNA show
broad dispersion curves of the dielectric constant at low fre-
guencies, which cannot be explained by a single relaxatior 0 " s00 1000 1500
time [14,15 in order to get a good fit with the experimental
curve we have to generalize Eq47) and (48), namely,

100

Frequency (c/s)

800 200 400 600 800 1000 1200 1400
€'(w)— € B(M) 1 a|k(0) (49) I I " ona | (Ib)
V] €€s® [1+ (r¢w)?] i

€s

e"(w):B(NA> 1 o 7e)(0)

s _ 50 600 - 600
V] €€esT [1+ (1w)?] 50

€s

IV. RESULTS AND CONCLUSION
. . . . . 400 - 400
The objectives raised in the Introduction have been

achieved. We derived an expression for the longitudinal po-
larizability and dielectric constanty|(w) and e(w), which
as derived from the FDT, have the real and imaginary parts
satisfying the Kramers and Kronig's dispersion relations.

In this method is defined a local capacitance and resis-
tance surrounding each group in a polyelectrolyte ionic so-
lution. This can be useful in modeling complex systems for
obtaining more realistic approximations, indeed the author obh—t— -t 1

.. . . . . 200 400 600 800 1000 1200 1400
envisions science as an evolution of ideas and approxima ) ) '
tions Dielectric constant €

We have used the simple expression ég(0) of Man- FIG. 1. (a8 Representation of Eq$47) and (48) for a DNA
del's model[3], which does not consider interionic interac- solution at room temperature in watek:=7400 A, molecular

tion and only one relaxation time. We can see from Fig. lweight M ,=7x10°, DNA concentration by weight 0.01%:;=1
that the profiles fore’(w) and €’(w) are in quite good ms,y=1,b=1.68 A,B=1. (b) Same aga), Cole-Cole plot.
agreement with the experimental data of Takashifdd, in
spite of the uncertainty in the fact& [22], in the degree of From Eq.(40) we estimate the total polyelectrolyte-ionic
counterions’ associatiofy and also in the molecular weight capacitancé:=133 pF and, consequently, the local capaci-
of the DNA sample, not reported in the cited paper bytance will beC=nC=0.61 uF. These values are substan-
Takashima but inferred by us through the reported DNAtially greater than the double layer capacitance surrounding a
length of 7800 A to be approximatelyx71(°. The DNA  spherical and rodlike particle in solutid@3—24, which is
molecule has two phosphate charges per unit, each with @f the order of fF. From the already known values’adnd 7
helical spacing of 3.37 A, then=3.37 A/2=1.68 A, conse- and from Eq.(29) we estimate the total “bound” ions resis-
quentlyN=L/b=4627, we considereg=1. tance asR=7.5 M(), meaning that the resistance per group
From Eg.(34) and from the experimental value far is R=1621 Q. From Eq.(39) we obtain the value of the
=103 s we estimate the mobility. of the “bound” ions as  average displacement of the “bound” ions under the influ-
1=1.96x10 °m? s 1 V1, which is 26 times smaller than ence of the thermal fluctuating field, giving for our DNA
the mobility of Na ions in water,uy,-=5.19x10"8  samples=33 A.
m? s 1 V1 showing that these ions are more or less Equation(32) gives the value for the static polarizability
trapped. a(0)=1.459< 10 2" F n?, which is 9.0% 10'? greater than

Dielectric loss ¢"

200 - 200




2114

the mean polarizability of water molecu@zo= 1.6x10 40

F n? [21].

Finally, from the knowledge o#;(0) and with the help of
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We suggest the application of the present formalism to the
determination of the perpendicular polarizability and fluctu-

ating dipole momente, (») and(p?)*2, respectively, pro-

duced by fluctuations of the ionic atmosphere surrounding

Eqg. (36) we estimate the mean thermal fluctuating dipolethe polyelectrolyte.

moment at room

the permanent dipole moment of a water moleddl&4 D).

temperature, p=(p?)1/2=2.454
X102 C m=7.37x10° D, which is 4x10° greater than
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